Risk of ASFV in Feed

Megan C. Niederwerder, DVM, PhD
Assistant Professor
Department of Diagnostic Medicine/Pathobiology
College of Veterinary Medicine
Kansas State University
mniederwerder@vet.k-state.edu
Why Feed?

• Porcine epidemic diarrhea virus
 – Last major transboundary animal disease introduced into U.S.
 – Introduced April 2013
 • Spread rapidly
 • 10% of herd died within 1 year
 – Unveiled **risk of feed** as vehicle for virus introduction and spread
Feed as a Transboundary Viral Disease Vector
What is the risk of feed or feed ingredients serving as a route for ASFV introduction and transmission?
3 Part Approach

1. Determine **survival** in feed and feed ingredients under transboundary model
Transoceanic Model

- Feed Ingredients
 - 5 g ingredient + 10^5 TCID$_{50}$ ASFV
- Environmental Chamber
 - Temperature, relative humidity
- Timetable: 30 days
- Diagnostic methods
 - PCR, VI, Bioassay

Dee et al., 2018
ASFV Georgia 07 Survival in Feed

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>SVA (FMDV)</th>
<th>ASFV (PRRSV 174)</th>
<th>BVDV (CSFV)</th>
<th>VSV</th>
<th>CDV (NiV)</th>
<th>IAV-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean meal-Conventional</td>
<td>(+)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Soybean meal-Organic</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Soy oil cake</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>DDGS</td>
<td>(+)</td>
<td>(-)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Lysine</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Choline</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Moist cat food</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Moist dog food</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Dry dog food</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Pork sausage casings</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Complete feed (+ control)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Complete feed (- control)</td>
<td>(+)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Stock virus control</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
</tbody>
</table>

- **Promoted virus survival**
- **No detectable virus**

Dee et al., 2018
3 Part Approach

1. Determine **survival** in feed and feed ingredients under transboundary model

2. Investigate **oral dose** and transmission in feed through natural feeding behavior

EMERGING INFECTIOUS DISEASES

Volume 25, Number 5—May 2019

Research

Infectious Dose of African Swine Fever Virus When Consumed Naturally in Liquid or Feed

Author affiliations: Kansas State University, Manhattan, Kansas, USA

DOI: 10.3201/eid2505.181495
Transmission of ASFV?
Determine the **infectious dose** and the **risk of infection** for ASFV Georgia 2007 via natural drinking and feeding behavior.
Experimental Design

Niederwerder et al., 2019. *Emerging Infectious Diseases.*
ASFV Oral Exposure

Niederwerder et al., 2019 *Emerging Infectious Diseases.*
Infection probability for repeated ASFV exposures

10^4 TCID$_{50}$ has **25% probability at 1 exposure**

Probability close to **100% at 10 exposures**

Nursery (4 exposures/d) vs Finisher (40 exposures/d)

Niederwerder et al., 2019 *Emerging Infectious Diseases.*
3 Part Approach

1. Determine **survival** in feed and feed ingredients under transboundary model

2. Investigate **oral dose** and transmission in feed through natural feeding behavior

3. Assess tools for **mitigating** risk of transmission in feed and feed ingredients
Acknowledgements

This work is funded by the State of Kansas National Bio and Agro-defense Facility Fund, the Swine Health Information Center (17-142 and 17-189), and the National Pork Checkoff (17-057 and 19-098)

Bob Rowland Ana Stoian Jordan Gebhardt
Scott Dee Vlad Petrovan Jeff Zimmerman
Diego Diel Maureen Sheahan Paul Sundberg
Cassie Jones Mathew Olcha Trevor Hefley
Steve Dritz Laura Constance Ying Fang
Jason Woodworth Mike Tokach Jia Liang